Notícias

Diego Puerta: ‘Vemos esforço para construir e gerar valor com IA generativa’

O último ano foi marcado pela curiosidade em torno da IA generativa. Entretanto, para Diego Puerta, presidente da Dell Brasil, 2024 será diferente, com as empresas começando a sua jornada. “Aquilo que víamos de tentar entender o impacto da tecnologia, hoje vemos o esforço para construir e gerar valor com IA generativa.”

Além disso, o executivo cita a importância do olhar para a tendência ao dizer que esse não é um assunto apenas na mesa do time de Tecnologia da Informação. Segundo ele, esse é um ciclo que está na discussão dos C-Levels e dos donos das companhias, que buscam entender a IA generativa.

Leia mais: 97% dos CIOs do Brasil pretendem gastar mais com ferramentas de IA em 2024, aponta estudo

“Estamos discutindo com um grande número de clientes a melhor aplicação da IA generativa em seus negócios”, comentou o executivo, citando que a Dell está conversando com empresas de setores como finanças, agronegócio, varejo, logística e provedores de serviços.

Em evento realizado para a imprensa, Ana Cristina Oliveira, diretora do Dell Research, complementa a visão de Puerta ao dizer que a empresa já estava estudando IA generativa há algum tempo, mas que não esperava a popularização “da noite para o dia”, principalmente com o ChatGPT. Mas, para ela, três motivadores ajudam a deixar a IA generativa no hype: a criatividade, a acessibilidade e os usos inovadores da tecnologia.

Entretanto, ainda há diversos desafios. Ana cita alguns deles:

  • Confiantenente errados: a prioridade é soar correto, não ser correto. Verificações especializadas podem ser necessárias.
  • Falsas expectativas: podemos esperar mais dele do que ele pode proporcionar. Sistemas derivados construídos sobre ele podem se tornar não confiáveis.
  • Viés: pode reforçar estereótipos ou produzir instruções prejudiciais.
  • Privacidade de dados: poucas empresas privadas têm meios para construir tais sistemas. Portanto, todos os dados de uso são controlados por eles.

Por fim, a especialista cita uma alternativa para as empresas que querem testar modelos, mas querem diminuir os perigos da proteção de dados e das ‘alucinações’ da IA. O RAG (Retrieval-Augmented Generation, ou Geração Aumentada de Recuperação) permite otimizar o resultado de um LLM com informações direcionadas, sem modificar o próprio modelo subjacente. Ou seja, a companhia não precisa investir em um novo modelo de linguagem, economizando tempo e investimento, mas tem o controle do que a ferramenta aprenderá e com quais dados.

Siga o IT Forum no LinkedIn e fique por dentro de todas as notícias!

Recent Posts

Pure Storage aposta em mudança de paradigma para gestão de dados corporativos

A Pure Storage está redefinindo sua estratégia de mercado com uma abordagem que abandona o…

2 semanas ago

A inteligência artificial é mesmo uma catalisadora de novos unicórnios?

A inteligência artificial (IA) consolidou-se como a principal catalisadora de novos unicórnios no cenário global…

2 semanas ago

Finlândia ativa a maior bateria de areia do mundo

À primeira vista, não parece grande coisa. Mas foi na pequena cidade de Pornainen, na…

2 semanas ago

Reforma tributária deve elevar custos com mão de obra no setor de tecnologia

O processo de transição previsto na reforma tributária terá ao menos um impacto negativo sobre…

2 semanas ago

Relação entre OpenAI e Microsoft entra em clima de tensão, aponta WSJ

O que antes parecia uma aliança estratégica sólida começa a mostrar rachaduras. Segundo reportagem do…

2 semanas ago

OpenAI fecha contrato de US$ 200 milhões com Departamento de Defesa dos EUA

O Departamento de Defesa dos Estados Unidos firmou um contrato de US$ 200 milhões com…

2 semanas ago